MS Views and News Be empowered with MS views and news. To receive The MS BEACON e-Newsletter, CLICK HERE - -

Visit our MS learning channel on YouTube, which provides hundreds of MS educational videos presented by MS Experts from across the USA. Archived here: -- Also please visit our Social media platforms: Facebook, Twitter, and Instagram . Each providing important information for the MS community. Furthermore, scroll down the left side of this blog to learn from the resources and links.

Disclaimer: 'MS Views and News' DOES NOT endorse any products or services found on this blog. It is up to you to seek advice from your healthcare provider. The intent of this blog is to provide information on various medical conditions, medications, treatments, for your personal knowledge and to keep you informed of current health-related issues. It is not a substitute for the advice of your physician. Should you or your family members have any specific medical problem, seek medical care promptly.


Wednesday, March 12, 2014

Cuprizone-induced demyelination as a tool to study remyelination and axonal protection


In the brain of multiple sclerosis (MS) patients, the conduction block of axons due to demyelination and inflammation underlies early neurological symptoms, whereas axonal transection accounts for permanent deficits occurring during later disease stages. The beneficial function of myelin for the protection of the axonal compartment and network stability between neurons has been shown in numerous studies. Thus, rapid and adequate remyelination is an important factor for axonal patronage during neuroinflammatory conditions. In this review article, we discuss frequently used experimental in vivo and in vitro animal models to examine remyelination and repair in MS. The focus of the discussion is the relevance of the toxin model 'cuprizone' to study the pathology of demyelination and the physiology of remyelination. This also includes recent findings in this animal model which implicate that axonal damage is an ongoing process independent of the initiation of endogenous remyelination.
[PubMed - in process]


To comment - click the comment link shown below
Share our Articles with others
Sign-up at: 
To Keep CURRENT  and up to date with MS News and Information
Donate Now Please - Click here
Thank you    

No comments: